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Simulations of the Instability of the m = 1
Self-Shielding Diocotron Mode in Finite-Length

Nonneutral Plasmas

Grant W. Mason and Ross L. Spencer

Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602

Abstract. The "self-shielding" m = I diocotron mode in Malmberg-Penning traps has been known
for over a decade to be unstable for finite length nonneutral plasmas with hollow density profiles.
Early theoretical efforts were unsuccessful in accounting for the exponential growth and/or the mag-
nitude of the growth rate. Recent theoretical work has sought to resolve the discrepancy either as a
consequence of the shape of the plasma ends or as a kinetic effect resulting from a modified distri-
bution function as a consequence of the protocol used to form the hollow profiles in experiments.
We have investigated both of these finite length mechanisms in selected test cases using a three-
dimensional particle-in-cell code that allows realistic treatment of shape and kinetic effects. We find
that a persistent discrepancy of a factor of 2-3 remains between simulation and experimental values
of the growth rate.

INTRODUCTION

Nonneutral plasmas, typically ions or electrons, can be confined for long periods of
time in a cylindrical Malmberg-Penning trap similar to that shown in Fig. 1. A stiff
axial magnetic field confines the particles radially, and charged rings at the ends of the
otherwise grounded cylinder provide electrostatic longitudinal confinement. Diocotron
modes are azimuthal drift waves in the cylindrical plasma that vary spatially as exp(imO).
The theory of diocotron modes in nonneutral plasmas has its origins in seminal papers
by Levy [1], Briggs, Daugherty and Levy [2], and the comprehensive treatment of
nonneutral plasmas by Davidson [3].

The azimuthal mode of interest here occurs for hollow density profiles where the
azimuthal flow of the plasma exhibits shear to create a rotation frequency profile w00(r)
that rises with increasing radius from the center, peaks, than decreases to the wall. The
resulting m = 1 mode ("self-shielded") has a frequency near the peak of the frequency
profile.

In the infinite length approximation, this mode is predicted not to be exponentially
unstable for all radial density profiles of the plasma column. In contrast, when the plasma
column is of finite length, the self-shielding m = 1 mode has been experimentally shown
to be exponentially unstable for hollow density profiles [4, 5, 6].

Several theoretical attempts have been made to understand the origin of the instability
[7, 8, 9, 10], but have failed to account for the exponential character of the stability
and/or the size of the growth rate. In particular, Smith [8] has drawn attention to finite
length effects and Finn et al. [11] have drawn attention to the importance of the shape
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FIGURE l. A Malmberg-Penning Trap. The axial magnetic field B confines charged particles radially
and voltages V on the rings confine the nonneutral plasma longitudinally in the cavity space between (he
rings.

of the ends of the plasma based on an analogy to vortex stretching from topography
variations in shallow fluid dynamics for geophysical flows. The theory of Finn, et al.
when adapted to vortex dynamics in nonneutral plasmas, demonstrates that the radial
variation of the equilibrium plasma length causes compression of the plasma parallel
to the magnetic field while conserving the line integrated density. Their theory predicts
the observed exponential growth of the instability, but predicts a growth rate that is still
somewhat more than a factor of two less than a test case taken by Finn et al. [I 1] from
data of Driscoll [5].

Coppa et al. [12] have refined the theory of Finn et al. but the refinements prove
relatively small when applied to the test case of Finn et al.

Hilsabeck and O'Neil [13] develop a Zero Debye Length Reduced Description, but
also fail to predict large enough growth rates based on end shape and length alone.
However, they also observe that experimental procedures to produce plasmas with hol-
low profiles involve lowering the confining ring potentials and dumping preferentially
the particles in the tail of the original Maxwellian velocity distribution, thus effectively
truncating the velocity distribution near the center of the plasma. For certain distribu-
tions of axial energies, the instability can be substantially affected.

Here we report the results of three-dimensional particle-in-cell simulations that at-
tempt to account for the remaining quantitative disagreement.

THEORY

We first consider electrons confined in cylindrical geometry by an axial magnetic field
and an electrostatic potential. The equations describing the motion are isomorphic to
those of two-dimensional fluid flow [1, 2] in the limit that the length of the plasma
is much greater than its radius. In the case of the nonneutral plasma, the particles are
considered to bounce longitudinally while drifting azimuthally. The bounce frequency is
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taken to be much larger than the azimuthal E x B drift, so that the longitudinal dynamics
is effectively separated from the bounce-averaged azimuthal drift. The fundamental
equations of the Drift-Poisson Model then become (in the infinite length approximation),

ap + .( u 0V 0 X v 2 o -- p ( 1)at + .(u)=0 u- B E0'

The equations can be linearized assuming

le = po+pien 0 = di+coetro d u = UO+Uleu (2)

leading to the diocotron mode equation,

rd d rd241  mnq /

In the infinite length approximation, the self-shielding mode has frequency W =
oo(r,,,a,) for which,

01 =r~m Coor)) r _ r,,•v(4)

0= 0, r > r,,,., (5)

where co0(r) is the equilibrium rotation frequency profile and r,7,, is the radius at which
the profile peaks. The eigenfrequency is real and the mode is neutrally stable in this
infinite length approximation.

Finn et al. identify two instability mechanisms when finite length plasma columns are
considered. The first occurs when the shape of the end of the plasma is such that there is a
radial variation of the equilibrium plasma length. In this case during motion there can be
a compression of the plasma by the confining potential that conserves the line integrated
density parallel to the magnetic field. The second mechanism is a perturbation of the
plasma length when particles interact with the confining potential at the ends. Finn et al.
demonstrate that both mechanisms give instability with comparable growth rates. The
mode equation becomes [11],

1 d d m01 o~
(co -- mncoo (r))[r-dr(r --r1) - --• ,- mrt

Smq no L'°(r) q no± r p-• 1 + -(o- mcno(r))no-01, (6)
EoB r LO(r) 60 L

where L0 (r) and L' (r) are respectively the equilibrium radial profile of the plasma length
and its radial derivative. The functional A[O] is the first order correction to the plasma
length caused by perturbations in the potential [11]. To make the analysis tractable,
Finn et al. approximate the equilibrium length of the plasma by a quadratic function.
However, perturbations in the plasma length (A) were implemented ignoring curvature
of the ends as a simple approximation.
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The work of Hilsabeck and O'Neil and of Coppa et al. include refinements to the
theory and implementation of Finn et al. Both accept an arbitrary plasma shape, use
realistic axial boundary conditions, and incorporate perturbations in the plasma length
self-consistently using a Green's function. Solutions are by numerical methods. Both
efforts find similar growth rates for the self-shielded mode that are several times smaller
than the comparable test case taken from experiment. Calculated real frequencies .of
the mode are slightly smaller than the maximum of the rotation profile in contrast to
experimental values that may be 25% lower than the maximum of the profile [13].

Hilsabeck and O'Neil conclude that quantitative agreement with the measured growth
rates and frequencies requires the inclusion of a kinetic effect which arises from the
experimental method used to load the hollow density profiles. The experimental protocol
is assumed to truncate the high-velocity tails of the longitudinal velocity distribution in
a radially dependent way. This can be important because the fast particles penetrate into
a region in the ends of the plasma where their w00(r) is reduced compared to slower
particles that do penetrate so deeply. If the longitudinal velocity distributions have radial
dependence, the dynamics of the mode can be altered.

SIMULATIONS

In this paper we take a numerical approach by doing particle-in-cell simulations. The
method has the advantage of incorporating realistic boundary and end conditions in
detail while also providing diagnostic information about the plasmas that are otherwise
unknown in the experiments or in the methods of Finn et al. and of Hilsabeck and O'Neil.
We perform numerical experiments with the intent of helping to understand whether
plasma shape and/or kinetic effects are adequate to predict experimentally measured
growth rates for the unstable in = 1 diocotron mode in finite-length plasmas.

Azimuthally symmetric equilibria are computed separately using a two-dimensional
(r - z) Successive Over-Relaxation (SOR) code [14]. Two-dimensional density and
electric potential arrays are passed from the equilibrium code to the simulation code and
interpolated onto a three-dimensional Cartesian grid. The three-dimensional density is
then represented by particles-in-cells (PIC). The azimuthal symmetry of the distribution
of particles is broken by small density perturbations or initial displacements of each
particle chosen to seed a particular azimuthal mode using the infinite-length theory for
the mode shapes.

In the present work, the plasma is typically represented by about 106 computational
"particles" that, in turn, each represent several thousand plasma electrons. The com-
putation is done in three-dimensional Cartesian geometry into which is embedded the
confining cylinder. The grid used was 65 x 65 x 129 for plasmas that were typically
0.30 m in length with a Debye length of > 0.003 m. Short-legged differential operators
for the Laplacian operator are used at the cylindrical boundary so that the cylindrical
shape is treated realistically. Likewise, boundary conditions are implemented realisti-
cally, with a grounded cylinder sandwiched between confinement rings at each end held
at sufficient potential to confine the plasma. Beyond the rings (longitudinally) and away
from the plasma on each end is a short buffer zone of grounded cylinder at the end of
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which periodic boundary conditions (ao/az = 0) are maintained to complete the bound-
ary conditions for the computation region.

Poisson's equation is solved by distributing density to the computational grid and
using a three-dimensional multigrid algorithm to solve Poisson's Equation. Particles are
moved in the (x,y)-plane assuming E x B drift motion and using a predictor-corrector
algorithm. In the longitudinal z-direction we use Newton's Second Law and a leap-
frog algorithm. Densities are distributed to the grid, fields are computed from Poisson's
Equation, particles are moved in response to the fields, and new densities are computed
to begin the cycle anew.

RESULTS

We have considered two "families" of equilibria. The first is based on a test case used
by Finn et al. [1 I]. The electron plasma had a radius rp = 0.02 m, confined within a
cylinder of radius r, = 0.038 m. The magnetic field was 375 G and the confining ring
potentials were -50 V. The central cylinder had a length of 0.32 m. The rings had a width
of 0.03 m and in this case the length of the buffer zone was zero.

The radial density profile of the plasma in the Finn theory was given by the
parametrization,

no(r) = no(0)[1 - (r/rp)2]2 [l + (p+2)(r/rp)2] (7)

for r < rp and zero elsewhere. The radial profile of the length of the plasma was
parametrized by Finn et al. as

Lo(r) = Lo(O)[l - K(r/rw) 2], (8)

where r,, is the radius of the cylinder. The hollowness of the profile was controlled by the
parameter p and the curvature of the ends was described by the parameter K. In the test
case computed by Finn et al., p was chosen to be 3, resulting in a ratio nma/no -- 1.28.
and a value for K of 0.25.

We prepared a simulation using the same radial density profile, plasma radius, cylin-
der radius, confining ring potentials and magnetic field as the Finn et al. test case. We
chose a plasma temperature of 1.2 eV and a plasma length of 0.30 m. Under these con-
ditions the value of kappa was approximately 0.3 and the value of n,,, was 6.28 x 1012

particles per cubic meter corresponding to wo (nax) = 1.44 x 106 sec- 1. Plasma length
profiles for the series of simulations based on the Finn et al. test case are shown in Fig. 2.
Observe that the vertical scale is truncated. The radial variation of Lo is relatively small
compared to the overall length of the plasma. The profiles in Fig. 2 do not appear to be
strictly parabolic, so our value of kappa (0.3) is only a rough approximation to the Finn
value of 0.25.

At each time step of the simulation a longitudinally line-integrated density function
was formed and then Fourier analyzed to find the amplitude and phase of the m = 1
mode. The phase signal as a function of time was used to measure the real frequency of
the mode and an exponential function was fitted to the amplitude signal (as a function of
time) to obtain the growth rate. The amplitude signal rises with an apparent exponential
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Plasma Length Profiles
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FIGURE 2. Radial length profiles for the plasmas identified with asterisks in Fig. 4. A parabolic fit
(L(x) = L4(l - K(r/r,) 2 )) to the uppermost curve yields roughly a value K = 0.3. As n,.n.../no increases,
the profiles are less and less parabolic.

growth, but the signal wobbles slightly with time relative to the exponential. We have
indicated with error bars an estimate of the uncertainty that this gave to the growth
rate measurements. Figure 3 shows a typical amplitude signal with a corresponding
exponential growth for comparison as well as the corresponding phase signal.

The results of the simulations are shown in Fig. 4. The ratio of growth rate to real
mode frequency is about 0.007 compared to the Finn et al. result of 0.009, the Coppa
et al. result of 0.008, and the experimental value of 0.025. Our real frequency was
1.40 x 106 sec- 1 which is consistent with the expectation of a real frequency near the
maximum of the radial rotation profile of our equilibrium (1.44 x 106 sec-1 ). In each
case in Fig. 4, the simulation gives a real frequency of the mode to within 1-3% of the
maximum of the rotation profile co0(max).

We completed the first "family" of simulations by maintaining the value of no(max)
and deepening the profile using the Finn et al. radial density parameterization with
p = 5.66,8.19, 15.07. The corresponding ratios lnta/no are 1.64, 2.00, 3.00. These
growth rates are also shown in Fig. 4 as the points marked with the asterisk (*) symbol.
The point at t,,ua/no(O) = 2 is coincident with the prediction of our drift-kinetic code.

The second family of simulations was done to address the possibility suggested by
Hilsabeck and O'Neil that the persistent discrepancy between experiment and theory
may be a kinetic effect when particles of differing energies penetrate the confining po-
tential at the ends to differing degrees. This effect may be enhanced because, experimen-
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FIGURE 3. (Upper) The phase signal in radians from which the real frequency 0), of the mode is deter-
mined. The phase signal from the simulation is remarkably linear. (Lower) An exponential growth curve
compared to the amplitude signal for the in = I mode from the particle-in-cell simulations. Error flags on
the simulation results plotted in Fig. 4 are estimates of the uncertainty in growth rate determinations based
on figures like this one.

tally, the hollow profiles are created from a non-hollow profile by temporarily lowering
the end potentials. This procedure allows more particles to escape near r = 0 than at
larger radii, but also depletes the Maxwellian distribution of velocities in a radially de-
pendent way. The nonmaxwellian distributions created in this way will depend heavily
on the protocol used to create the plasmas and experimental velocity distribution data
are not available for a specific test case.

For purposes of simulation, we began with a flat-topped density profile. We again
used a magnetic field of 375 G and a temperature of 1.2 eV. However, the radius of the
cylinder was 0.05 m and the plasma length about 0.35 m. The central density plateau
was 5 x 1012 per cubic meter. The confining ring potentials were -200 V. The central
cylinder had a length of 0.44 m, rings a width of 0.03 m, and a buffer zone length of
0.05 m.

The equilibrium was calculated and loaded into the simulation code as before. How-
ever, when the code began, the ring voltages (boundary conditions) were reduced linearly
over a I psec period of time to some fraction of the original confining value chosen to
reduce the potential near r = 0 to a value close to the central potential of the plasma. The
rings were then held down at this destination potential for 4 psec, then linearly raised
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Relative Growth Rate versus Hollowness
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FIGURE 4. Comparisons of calculated growth rates to the theory of Finn et at. and an experimental
test case (open circles). Asterisks (*) mark simulation points based on a test case of Finn et al. taken from
experiment (UCSD). Hyphens (-) mark simulation points obtained by depleting the tails of the longitudinal
velocity distributions. Corresponding Maxwellian cases are marked by "x" for comparison. Also included
for comparison are predictions from our drift-kinetic code calculation (open boxes) and results of the
"complete model" of Coppa et al. marked with diamonds.

again to the original value over a final microsecond. The resulting density profile was
hollow and not unlike the profiles obtained from the Finn et al. formula. The degree of
hollowness (nm/no(0)) was controlled by the fraction applied to the -200 V ring po-
tentials when the confining potentials were lowered. Since the potential remained down
for several bounce times, virtually all particles with longitudinal velocities below a cer-
tain critical value were removed. The velocity distributions resulting from this protocol
had a radial dependence and since equilibration times were much longer than the time
of our simulation, the resulting velocity distributions as a function of radius were and
remained "nonmaxwellian" through the course of the simulation. The hollowed den-
sity profiles created in this way are shown in Fig. 5. Figure 6 shows the corresponding
root-mean-square velocity profiles.

Three plasmas were created using the protocol described above with nmax/no =

1.5,3.2,6.2. The corresponding density profiles are shown in Fig. 5. The growth rates
are shown in Fig. 4 marked with the hyphen (-) symbol. The 6.2 point is labelled
as "nonmaxwellian." For comparison, we took the radial density profiles from these
three nonmaxwellian simulations and created distributions differing only in that the
longitudinal velocity distributions were Maxwellian at all radii (with temperature 1.2
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FIGURE 5. Simulated hollow line-integrated density profiles obtained by temporarily lowering the
potentials on the confinement rings according to the protocol described in the text. Absolute line integrated
densities at r = 0 are 1.10 x 1012 (bottom), 5.12 x 1011 (middle), and 2.52 x 10'' (top) particles per square
meter.

eV). These are shown in Fig. 4 marked with the "x" symbol. The nonmaxwellian growth
rates are enhanced over their Maxwellian counterparts by factors of 1.9, 1.3, and 1.5 for
n,cl/no equal to 1.5, 3.2, and 6.2 respectively.

As an approximate check of the results of our simulations and to provide an additional
comparison to results by Finn et al. and Coppa et al., we have used a separate linear
drift-kinetic eigenvalue code to compute growth rates. The code, which was originally
written for the infinitely-long plasma approximation, was easily modified to include the
L'o/Lo term on the right-hand-side of Eq. 6 but not the A term. The eigenvalue code uses
equilibria calculated separately by the same SOR code used to calculate equilibria for
the simulations using density profiles from Eq. 7. See Fig. 4.

This independent calculation reproduces the Finn et al. growth rate almost exactly
at n1ma't/no = 1.28, coincides exactly with the simulation point at nrna/no = 1.64, and
meshes smoothly with the results of Coppa et al. using their "complete model." The
results of our eigenvalue code are shown as open squares in Fig. 4. The results of Coppa
et al. are shown as open diamonds.
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X 105 Root-Mean-Square Velocity Profiles
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FIGURE 6. Radial root- mean- square velocity (vz) profiles for the simulated plasmas, of Fig. 5. The
corresponding velocity distributions at each radius are identified as "nonmaxwellian" in Fig. 4.

CONCLUSIONS

We have used particle- in-cellI simulations to compute growth rates for the hollow, finite-
length in = 1 self-shielded diocotron mode. We have investigated test cases where the
persistent discrepancy between theory and experiment may be a consequence of the
shape of the ends of the plasma or kinetic effects arising from a nonmaxwellian velocity
distributions introduced in the experimental preparation of the plasmas. In none of the
test families were we able to achieve growth rates as large as the experimental value.
Real frequencies computed in the simulations for the self-shielding mode were typically
within about 3% of the maxima of the respective rotation profiles. Thus, we agree with
the conclusion of Hfilsabeck and O'Neil that the end shape effects we considered are
alone insufficient to remove the discrepancy with experiment.

We have also simulated a nonmaxwellian longitudinal velocity distribution effect sug-
gested by Hilsabeck and O'Neil. The effect increases growth rates by 30-90% compared
to Maxwellian control cases. Nevertheless, the simulation is still a factor of 2.0 too low
to remove the discrepancy with experiment at lltnad/no(0) = 1.28. However, the two
methods which we used to create the nonmaxwellian distributions may not correspond
to the actual experimental protocols, leaving some room yet for further study.
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